LESSON 6.1b

Writing Exponential Models

Today you will:

- Write exponential models to analyze real world situations.
- Practice using English to describe math processes and equations

Core Vocabulary:

- Exponential function, p. 296
- Exponential growth function, p. 296
- Growth factor , p. 296
- Exponential decay function , p. 296
- Decay factor , p. 296
- Asymptote , p. 296

Previous:

• Properties of exponents

Exponential Models (review)

Exponential equations/functions that reflect (model) real-world situations.

A common example is a value you are tracking that increases or decreases by a fixed percentage over a regular period of time (a year).

Exponential Growth Model

 $y = a(1+r)^t$

Exponential Decay Model

 $y = a(1-r)^t$

...where a is the initial/starting value r is the rate of change ... percent growth or decay

t is the amount of time that has past

(1+r) is the growth factor (1-r) is the decay factor

In 2000, the world population was about 6.09 billion. During the next 13 years, the world population increased by about 1.18% each year.

- **a.** Write an exponential growth model giving the population *y* (in billions) *t* years after 2000. Estimate the world population in 2005.
- **b.** Estimate the year when the world population was 7 billion.

SOLUTION

a. The initial amount is a = 6.09, and the percent increase is r = 0.0118. So, the exponential growth model is

$y = a(1+r)^t$	Write exponential growth model.
$= 6.09(1 + 0.0118)^t$	Substitute 6.09 for <i>a</i> and 0.0118 for <i>r</i> .
$= 6.09(1.0118)^{t}$.	Simplify.

Х	Y 1	
6	6.5341	
7	6.6112	
8	6.6892	
9	6.7681	
10	6.848	
11	6.9288	
12	7.0106	
X=12		

Using this model, you can estimate the world population in 2005 (t = 5) to be $y = 6.09(1.0118)^5 \approx 6.46$ billion.

b. Use the *table* feature of a graphing calculator to determine that $y \approx 7$ when t = 12. So, the world population was about 7 billion in 2012.

Tell whether the function represents exponential growth or decay. What is the rate of growth or decay?

 $y = (1.3)^x$

SOLUTION

$y = (1.3)^x$	b = 1.3 (greater than 1) so this is growth
$y = (1 + .3)^x$	Rewrite in $y = (1 + r)^x$ form, r is the rate of growth
r = .3	

The rate of growth is .3 or 30%.

Tell whether the function represents exponential growth or decay. What is the rate of growth or decay?

 $y = \left(\frac{2}{3}\right)^x$ SOLUTION $y = \left(\frac{2}{3}\right)^x$ $b = \frac{2}{3}$ (less than 1) so this is decay Rewrite in $y = (1 - r)^x$ form, r is the rate of decay $\frac{2}{3} = (1 - r)$ b = (1 - r) $r = 1 - \frac{2}{2}$ Solve for *r* $r = \frac{1}{3}$

The rate of decay is $\frac{1}{3}$ or $.\overline{33}$ or 33%.

The amount *y* (in grams) of the radioactive isotope chromium-51 remaining after *t* days is $y = a(0.5)^{t/28}$, where *a* is the initial amount (in grams). What percent of the chromium-51 decays each day?

SOLUTION

 $y = a(0.5)^{t/28}$ Write original function. $= a[(0.5)^{1/28}]^t$ Power of a Power Property $\approx a(0.9755)^t$ Evaluate power. $= a(1 - 0.0245)^t$ Rewrite in form $y = a(1 - r)^t$.

The daily decay rate is about 0.0245, or 2.45%.

You deposit \$9000 in an account that pays 1.46% annual interest. Find the balance after 3 years when the interest is compounded quarterly.

SOLUTION

With interest compounded quarterly (4 times per year), the balance after 3 years is

 $A = P\left(1 + \frac{r}{n}\right)^{nt}$ Write compound interest formula. = $9000\left(1 + \frac{0.0146}{4}\right)^{4 \cdot 3}$ P = 9000, r = 0.0146, n = 4, t = 3

≈ 9402.21.

Use a calculator.

The balance at the end of 3 years is \$9402.21.

Homework

Pg 300, #23-44